DISTRIBUTION OF MANNO-HEPTULOSE AND SEDOHEPTULOSE IN PLANTS*

TAKUO OKUDA and KAZUKO MORI

Faculty of Pharmaceutical Sciences, Okayama University, Tsushima, Okayama, Japan

(Received 31 July 1973. Accepted 15 October 1973)

Key Word Index—Gymnospermae, angiospermae; manno-heptulose; sedoheptulose; distribution.

Abstract—Upon investigation of the distribution of heptuloses in plants, most of the plants which were positive to the preliminary PC of the heptulose were found to contain manno-heptulose by the confirmative tests with descending PC and GLC of TMS derivatives after purification on the thick paper chromatogram. The amounts of manno-heptulose in many plants were comparable to those of sedoheptulose, and often higher than that of the latter.

INTRODUCTION

Among higher carbon sugars, only sedoheptulose is known to be widely distributed in plants. Its occurrence is expected on the basis of the photosynthesis and the pentose-phosphate cycle of sugar metabolism, although the investigations of the distribution of sedoheptulose have hitherto been carried out almost solely by PC. The isolation of accumulated sedoheptulose has been limited to the representatives of a few families: Crassulaceae, Saxifragaceae and Primulaceae. After isolating labelled sedoheptulose and coriose (D-altro-3-heptulose) from Coriaria japonica A. Gray, we attempted to detect higher carbon sugars in other plant species using a combination of GLC and three types of PC because it was considered that the PC method hitherto applied to plant extracts may often be unsatisfactory in differentiating sedoheptulose from other heptuloses. We began the investigation with plants which are taxonomically related to the Coriariaceae† and then extended the survey to members of other families.

RESULTS AND DISCUSSIONS

Table 1 lists the plants whose aqueous extract after fermentation showed spots corresponding to heptuloses by ascending PC. The extracts which gave a positive preliminary test were further fractionated by preparative PC to remove the substances which caused tailing of the heptulose spots on the preliminary test and also to remove

- * Part V in the series "Coriose and Related Compounds". For Part IV see OKUDA, T. and KONISHI, K. (1969) Yakugaku Zasshi 89, 1407.
- † Based on Engler, A. (1964) Syllabus der Pflanzenfamilien, 12 Auflage.
- ¹ Kull, U. (1965) Beitr. Biol. Pflanzen 41, 231.
- ² NORDAL, A. and KREVSTRAND, R. (1951) Acta Chem. Scand. 5, 85, 898.
- ³ LAFORGE, F. B. and HUDSON, C. S. (1917) J. Biol. Chem. 30, 61; NORDAL, A. and WICKSTROM, A. (1950) Bull. Soc. Chim. Biol. 32, 722.
- ⁴ NORDAL, A. and KREVSTRAND, R. (1952) Acta Chem. Scand. 6, 446.
- ⁵ NORDAL, A. and KREVSTRAND, R. (1951) Acta Chem. Scand. 5, 1289.
- ⁶ OKUDA, T. and KONISHI, K. (1968) Yakugaku Zasshi 88, 1329.

TABLE 1. DISTRIBUTION OF SEDOHEPTULOSE AND Manno-HEPTULOSE IN LEAVES OF VARIOUS PLANTS

Families	Species	Month* collected	MH†	SH‡	MH/SH
	Gymnospermae				
Pinaceae	Cedrus deodara Loud.	12		+	
Taxodiaceae	Cryptomeria japonica D. Don	12	i	т	
Cupressaceae			1		
Cupressaceae	Chamaecyparis obtusa Endl. Angiospermae Dicotyledoneae	12	one.	+	
Salicaceae	Populus nigra L. var. italica Muench.	7	+	+	3.4
Moraceae	Ficus carica L.	7	+	+	0.7
Theaceae	Camellia japonica L.	7			
		7	+	+	3.5
riamamendaceae	Liquidambar formosana Hance.		+	+	7.4
C 1	0.1 () 701)	12	+	+	
Crassulaceae	Sedum lineare Thunb.	7	+	+	0.05
		12			
	S. kamtschaticum Fisch.	11	+-	+	0.01
Saxifragaceae	Saxifraga stolonifera Curtis	7		- +	
	Chrysosplenium gravanum Maxim.	5	www.	+	
	Hydrangea macrophylla Ser. forma				
	otaksa Sieb. et Zucc.	7	+	+	1.4
Rosaceae	Photinia glabra Maxim.	7	+	+	19
	Cassia tora L.	7	+	7	17
Leguminosae					
Carre to	Pueraria lobata Ohwi	7	+		
Geraniaceae	Pelargonium inquinans Ait.	7	+		
Euphorbiaceae	Daphniphyllum macropodum Miq.	3	+	+	
	Ricinus communis L.	7	+	***	
	Triadica sebifera Small	7	+	+	0.43
	Euphorbia helioscopia L.	7	+	+	0.05
	E. pekinensis Rupr. var. japanensis Makino	7	+	+	6.1
	E. jolkinii Boiss.	7			
	,	12	+	+	3.1
	E. lathyris L.	7	+	+	7-8
	E. Court production	12	+	+	7 0
	E. supina Rafin.	7			0.36
		7	+	+	0.26
	E. maculata L.		+	†	4.3
	Mallotus japonicus Muell. Arg.	7	+	+	2-8
		11	+	+	
	Aleurites fordii Hemsl.	7	+	+	0.34
Rutaceae	Xanthoxylum piperitum DC.	7	+	_	
	Phellodendron amurense Rupr.	7	+	No. of Co.	
	Poncirus trifoliata Rafin.	7	+	~~	
Meliaceae	Melia azedarach L. var. japonica Makino	6	+	+	0.17
	., 1	11	+	+	
Coriariaceae	Coriaria japonica A. Gray	6	+	+	0.09
Anacardiaceae	Rhus javanica L.	6	+	+	4.0
Balsaminaceae	Impatiens balsamina L.	7	+	~	40
Aquifoliaceae		7			3.4
	Hex rotunda Thunb.		+	+	2.6
		2 7	+	+	
	I. oldhami Miq.	7	+-	+	0.06
	I. pedunculosa Miq.	7	+	+	0.09
	I. latifolia Thunb.	11	+	+	2.1
	I. crenata Thunb. f. bullata Rehd.	7	+	+	0.03
	I. serrata Thunb. var. sieboldii Loesn.	7	-	7-	1.0
	Ampelopsis brevipedunculata Tr.	7	+	-	
Vitaceae	Hibiscus syriacus L.	11	1	1.	3.3
				1	9.9
Vitaceae Malvaceae Primulaceae	•		.1		0.94
Malvaceae Primulaceae	Lysimachia fortunei Maxim.	8	+	+	0.86
Malvaceae	Lysimachia fortunei Maxim. Fraxinus longicuspis Sieb. et Zucc. f.	8			
Malvaceae Primulaceae	Lysimachia fortunei Maxim.		+ + +	+ + + +	0·86 2·8 3·2

TABLE 1.—cont.

Families	Species	Month* collected	МН†	SH‡	MH/SH§
G :0.1	Olea europaea L.	7	+	+	5.4
Caprifoliaceae	Lonicera japonica Thunb. Monocotyledoneae	11	+	_	
Stemonaceae	Stemona japonica Miq.	7	_	+	
Iridaceae	Crocus sativus L.	2	+	+	6.0

^{*} For instance, 12 means collected in December.

myo-inositol which shows an almost identical GLC retention time to that of manno-heptulose. Sedoheptulose and manno-heptulose were isolated after preparative PC and characterised by descending PC and by GLC using the corresponding TMS derivatives.

Most of the plants which were positive in the preliminary test contained both mannoheptulose and sedoheptulose (Table 1). It is notable that plants of the Euphorbiaceae (11 species) and Aquifoliaceae (6 species) contain mannoheptulose. Some plants contain only mannoheptulose whilst other plants contain only sedoheptulose; although the number of the latter is smaller. However, most of the plants studied contained both mannoheptulose and sedoheptulose, and more than half of these plants contained larger amounts of mannoheptulose than those of sedoheptulose (see ratio Table 1). Our results clearly indicate that mannoheptulose is a widely distributed monosaccharide in nature although previous work has indicated that it is a rare sugar, being found only in Persea gratissima⁷ and a few other plants. mannoheptulose is presumed to be D-mannoheptulose based on its probable route of biosynthesis in the plant and also on the fact that only the D-series of this sugar has been previously isolated.

EXPERIMENTAL

Preparation of plant extracts. Leaves were extracted with boiling H_2O for 30 min immediately after collection. The soln was concentrated in vacuo and treated with baker's yeast overnight and filtered. The filtered soln was evaporated in vacuo and the residue extracted $2\times$ with boiling MeOH for 1 hr. The MeOH soln was evaporated and the syrupy residue submitted to the preliminary test. The extracts which were positive to the preliminary test were then further fractionated by preparative PC.

PC of the extracts. Heptuloses were detected using orcinol-Cl₃CCOOH-n-BuOH (saturated with water) (1:30:240, w/w/v). (a) The preliminary test was carried out with n-BuOH-pyridine-H₂O (6:4:3) using the ascending method. The R_f values of sedoheptulose and manno-heptulose were not consistent but were in the range 0.48 and 0.43 respectively. (b) Preparative PC was carried out on thick cellulose papers (40 × 40 × 0.7 cm) using n-BuOH-EtOH-H₂O (4:1·2:1). Heptuloses were detected by the orcinol reagent on a few strips cut from the paper. The region of the same R_f on the remainder of paper was then removed and extracted with MeOH. The syrupy residue obtained on evaporation of the MeOH soln was submitted for the final PC and GLC. (c) Final PC was carried out using the descending method with EtOAc-EtOH-H₂O (8:2:1).

GLC of the extracts. TMS derivatives of the syrups were prepared with trimethylchlorosilane-hexamethyldisilazane-pyridine (1:2:10).9 GLC was carried out with a Shimadzu 5A instrument equipped with FID

[†] manno-Heptulose.

[‡] Sedoheptulose.

[§] The ratio of manno-heptulose to sedoheptulose is based on the peak area in GLC, and calculated using the calibration graph.

⁷ LAFORGE, F. B. (1917) J. Biol. Chem. 28, 511.

⁸ BEGBIE, R. and RICHTMYER, N. K. (1966) Carbohyd. Res. 2, 272; RICHTMYER, N. K. (1970) Carbohydr. Res. 12, 233; RENDIG, V. V. and McComb, E. A. (1960) Arch. Biochem. Biophys. 89, 323; BEVENUE, A., WHITE, L. M., SECOR, G. E. and WILLIAMS, K. T. (1961) J. Assoc. Offic. Agr. Chemists 44, 265; YOUNG, M. (1972) Br. Phycol. J. 7, 285.

⁹ OKUDA, T. and KONISHI, K. (1969) Chem. Commun. 796.

using glass columns (2 m \times 3 mm i.d.) packed with 3% OV17 on 80–100 mesh Chromosorb W HMDS treated, and 1.5% SE30 on 60–80 mesh Chromosorb W HMDS treated. Oven temp.: 150° for OV17, and 170° for SE30; carrier gas: N₂. R_t relative to α -D-glucose: manno-heptulose (1.87 on OV17 and 2.13 on SE30), sedoheptulose (1.71 on OV17 and 1.87 on SE30).

Calibration and calculation. The ratio of manno-heptulose to sedoheptulose was determined on SE-30 at 170°. Calibration was obtained by chromatographing 9 different ratios of the two sugars and plotting the ratio of the peak area of manno-heptulose to sedoheptulose against the ratio of the amount of the two sugars. The ratio of the two sugars in each sample extract was determined by applying this calibration to the ratio of the peak areas: (weight of manno-heptulose/weight of sedoheptulose)/(peak area of manno-heptulose/peak area of sedoheptulose) = 0.86.